11 research outputs found

    REALIZATION OF LOW TRANSITION BASED PRPG FOR POWER OPTIMIZED APPLICATIONS

    Get PDF
    This paper proposes low power pseudo random test pattern generator. This produces the necessary test patterns which are used for running the circuit under test for detecting faults. Power consumption of the circuit under test is measured by switching activity of the inside logic which depends on the randomness of applied stimulus. Power consumption is greatly increased due to the reduction of correlation between the successive vectors of applied stimulus. A modified conventional linear feedback shift register is implemented for reducing power of circuit under test by generating the patterns by reducing the utilization of hard ware. The main intension of producing intermediate patterns is to reduce the conventional activity of primary inputs (PI) that which reduces the switching activities inside the CUT and by this power consumption is reduced without using huge hardware

    Tensile Behaviour of Natural Polymer Composite Materials at Ambient and Elevated Temperatures

    No full text
    331-337The behaviour of materials can change significantly when they are exposed to high temperatures. Therefore, it is essential to understand how materials perform under elevated temperature conditions before recommending them for applications that involve exposure to high temperatures. The present work describes the preparation of composite materials using natural biodegradable waste materials such as groundnut shell powder and teak wood powder as reinforcement phases for a polyester matrix. The composites were tested for their mechanical properties such as tensile modulus, tensile strength, and percent of elongation, as well as their thermal conductivity at room temperature. Later, using the simulation studies, the experimental behaviour of natural composites at room temperature was validated and further extended to find the same composite behaviour at elevated temperatures. From the current studies, it is identified that teak wood powder reinforced composites experienced more stress than the ground nut shell powder reinforced composites at the selected elevated temperatures, such as 50 C, 80 C, 100 C, 120 C, and 150 C respectively. At room temperature, the teak wood powder reinforced composites had a 60% higher tensile modulus, 97% higher tensile strength, and 12.5% greater thermal conductivity than the GNSP composite under similar particle loading, hosting medium, and environmental conditions

    Modification of drug delivery to improve antibiotic targeting to the stomach

    No full text
    The obstacles to the successful eradication of Helicobacter pylori infections include the presence of antibiotic-resistant bacteria and therapy requiring multiple drugs with complicated dosing schedules. Other obstacles include bacterial residence in an environment where high antibiotic concentrations are difficult to achieve. Biofilm production by the bacteria is an additional challenge to the effective treatment of this infection. Conventional oral formulations used in the treatment of this infection have a short gastric residence time, thus limiting the duration of exposure of drug to the bacteria. This review summarizes the current research in the development of gastroretentive formulations and the prospective future applications of this approach in the targeted delivery of drugs such as antibiotics to the stomach
    corecore